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Figure S1.  Typical sequence of applied current density, i , and measured response of 
the potential vs. Li/Li+,  , for a {100} Si wafer. 
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Figure S2.  Typical sequence of applied current density, i , and measured response of 
the potential vs. Li/Li+,  , for a {111} Si wafer. 
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Derivation of the Kinetic Model 

The redox reaction at the electrolyte/
ηa-Li Si  interface is given by 

  +Li Lie  . (S1) 

Associated with this redox reaction, we take the current density through the electrolyte/

ηa-Li Si  interface as given by the Butler-Volmer equation: 
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where i  is the current density, 0i  
is the exchange current density,   is the charge 

transfer coefficient, F  is Faraday’s constant, R  is the ideal gas constant, T  is the 

temperature,   is the potential of the electrode (i.e., the measured voltage), and  curr

eq  

is the equilibrium potential in the current state, corresponding to the lithium 

concentration in the electrode near the electrolyte/
ηa-Li Si  interface.  Here, we have 

neglected mass transport through the electrolyte, i.e., we do not consider the 

concentration polarization.  For comparison to our experiments, we believe this 

assumption should be valid because of the relatively small currents in our tests.  

Additionally, in general the exchange current density can be a function of the lithium 

concentration in the electrode near the electrolyte/
ηa-Li Si  interface.  However, in this 

model, we will examine small changes in concentration from a metastable phase, 

ηa-Li Si , and hence 0i  will be taken as a constant.  Also, since the redox reaction involves 

one electron per lithium atom, the flux is given by /J i q , where q  is the elementary 

charge.   Taking 1/2  for simplicity, we get 
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 In the lithiated phase,    is the number of lithium atoms hosted by each silicon 

atom.  We regard   as a constant and   as a small deviation,   .  As a result, the 

diffusion of lithium atoms in the lithiated silicon phase is driven by the position-

dependence of the composition,  y , where y  is the position as shown in Figure 3.  Let 

C  be the concentration of lithium in the lithiated phase (i.e., the amount of lithium per 

unit volume of the lithiated phase).  The concentration of lithium in this phase relates to 

the composition by  
ηLi Si/C     , where 

ηLi Si  is the atomic volume of the lithiated 

phase.  We take the flux, 2J , to be driven by the gradient in the concentration of lithium 

through the thickness of the lithiated silicon:   
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where D  is the diffusivity of lithium in the lithiated silicon.  Because   , D  is taken 

to be a constant, independent of the concentration.  In general, the flux of lithium is 

driven by the gradient in chemical potential.  In writing Equation (S4), we have taken 

the concentration gradient as the sole driving force, i.e., we have neglected any other 

driving forces such as those due to stress gradients.  This assumption should be valid for 

a planar geometry for which the stress is constant through the thickness of the lithiated 

silicon.1  In support of this hypothesis, Chon, et al. experimentally observed a constant 

stress, independent of time, during the lithiation process for {100} Si wafers.2 

 In the steady state, the flux is independent of position, and the concentration is 

linear in the position, so that 
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where 1C  is the concentration of lithium in the lithiated silicon at the interface between 

the electrolyte and the lithiated silicon, 2C  is the concentration of lithium in the 

lithiated silicon at the interface between the lithiated silicon and crystalline silicon 

phases, and 0y  is the thickness of the lithiated silicon. 

 At the interface between the lithiated silicon and the crystalline silicon phases, a 

chemical reaction occurs: 

   Li Si Li Si  


   . (S6)   

The reaction is driven by the excess lithium 2  in the lithiated silicon at this interface.  

The rate of reaction controls the flux of lithium across the interface.  For simplicity, we 

take the flux corresponding to this reaction to be given by the first-order relation: 
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where k  is the rate of the reaction.  In general, the flux, 
3J , may have a nonlinear 

dependence on 2 .  However, Equation (S7) should be valid to first order for   .  

Additionally, we propose that k  is a function of the crystallographic orientation, as is 

consistent with the experiments in this paper.  

 In the steady state, all of the fluxes are equal:  
1 2 3 J J J .  In a unit time, dt , 

the number of atoms that react to form new lithiated silicon is 
3  J A dt , where A  is the 

cross-sectional area of the planar interface.  During this time, dt , the reaction increases 

the volume of the 
ηa-Li Si  layer by 3 Li Si /J A dt


   .  As a result, the thickness of the 



lithiated silicon phase increases by 
η0 3 Li Si /dy J dt     so that the instantaneous 

velocity of phase boundary is given by 
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We will take the quantity 
ηLi Si /  as a constant, which is valid for small changes in 

composition,   .  In fact, more generally, this quantity has been found to be 

constant for large values of   .3 

 Since 
1 3J J  in the steady state, the velocity of the phase boundary is given by: 
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 From the Nernst equation, the equilibrium potential, eq
, is given by 
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RT
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where the reference electrode is taken to be that of pure metallic Li.  The parameter   is 

the activity coefficient, which in general can be a function of the concentration, and 1x  

denotes the mole fraction of lithium atoms in 
ηa-Li Si  at the interface with the 

electrolyte.  If the composition of the amorphous lithiated region at the interface with 

the electrolyte is given by 
1η+δLi Si , the mole fraction is 
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 Let  ref

eq
 denote the equilibrium potential in the reference state, corresponding 

to 
ηa-Li Si .  Noting that      curr ref curr ref

eq eq eq eq
, and combining with 

Equation (S10): 
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Expanding this equation for 1   to first order gives: 
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Since  
ηLi Si/C      and 

2 3J J  in the steady-state: 
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Combining Equations (S7)-(S9), (S13) and (S14) we obtain: 
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This is an implicit equation for the instantaneous velocity of the phase boundary, 

0 /dy dt , as a function of measured potential,  .  Recalling that /J i q , we get an 

implicit relationship between the applied current density and the measured potential:  

  
 

ηLi Si 0

0

1
2sinh 1

2 1

ref

eq

kyi F RT
i

i RT F q D k 

     
                

. (S17) 

 

  



References 

 

1. Zhao, K. J.; Pharr, M.; Wan, Q.; Wang, W. L.; Kaxiras, E.; Vlassak, J. J.; Suo, Z. G. 

Journal of the Electrochemical Society 2012, 159, (3), A238-A243. 

2. Chon, M. J.; Sethuraman, V. A.; McCormick, A.; Srinivasan, V.; Guduru, P. R. Physical 

Review Letters 2011, 107, (4), 045503. 

3. Zhao, K. J.; Tritsaris, A. G.; Pharr, M.; Wang, W. L.; Okeke, O.; Suo, Z. G.; Vlassak, J. 

J.; Kaxiras, E. Nano Letters 2012, DOI:  10.1021/nl302261w. 

 

 


